
Incremental Scheduling Engines -
Cost Savings through Automation

John Jaap & Shaun Phillips

Mission Operations Laboratory
Marshall Space Flight Center

National Aeronautics and Space Administration
E050, MSFC, AL 35812

John.Jaap@nasa.gov

Abstract
As humankind embarks on longer space missions farther
from home, the requirements and environments for
scheduling the activities performed on these missions are
changing. As we begin to prepare for these missions it is
appropriate to evaluate the merits and applicability of the
different types of scheduling engines. Scheduling engines
temporally arrange tasks onto a timeline so that all
constraints and ob.jectives are met and resources are not
overbooked. Scheduling engines used to schedule space
missions fall into three general categories: batch, mixed-
initiative, and incremental. This paper, presents an
assessment of the engine types, a discussion of the impact of
human exploration of the moon and Mars on planning and
scheduling, and the applicability of the different types of
scheduling engines. This paper will pursue the hypothesis
that incremental scheduling engines may have a place in the
new environment; they have the potential to reduce cost, to
improve the satisfaction of those who execute or benefit
from a particular timeline (the customers), and to allow
astronauts to plan their own tasks and those of their
companion robots.

Introduction
The National Aeronautics and Space Administration
(NASA) is charting a bold new course into the cosmos, a
journey that will take humans back to the Moon, and
eventually to Mars and beyond. Currently, operations is
the most expensive part of many space missions; the cost of
operating the lnternational Space Station (ISS) is in excess
of one billion dollars per year. Current planning and
scheduling methods need to be replaced with automated
methods. In addition, every avenue should be taken which
can reduce the stress and tedium endured by astronauts. A
mission to Mars is expected to take about two years; and,
during much of the mission, light-time delays (typically 10
to 15 minutes) will negate voice conversations with the
ground. One good way to address these human factors
issues is to give the astronauts control over their daily
schedule. The current “job-jar’’ paradigm used on the ISS

Copyright 8 2005. American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

Shaun.Phillips@nasa.gov

only allows the astronauts to select additional optional
tasks which use limited resources. True astronaut control
would allow them to schedule or re-schedule most tasks.
For some foreseeable contingencies, complete crew
autonomy in planning and scheduling may be required.
The scheduling systems of the future must be able to handle
both the complexity of the tasks and procedures (to ensure
a valid schedule) and the flexibilities of the procedures and
the equipment (to effectively utilize available resources).

Scheduling Overview
Planning and scheduling software temporally arranges tasks
onto a timeline so that all constraints and objectives are met
and resources are not overbooked. The scheduling unit or
scheduling request addressed by the scheduling software is
an “operations sequence” containing multiple tasks and the
temporal relationships between the tasks.

Example: Dinner is a scheduling unit, which includes
tasks that prepare dinner, eat dinner, and cleanup. All
tasks must be done and they have temporal
relationships; each follows the other.

In the space activity domain, temporal relationships such as
sequential, overlap, during, and avoid are common.
Additionally the operations sequence can have parallel
paths, repetitions, and other arrangements. In the domain
of human space flight, operations sequences are often
networks, with embedded sub-networks. To emphasize the
complexity of the problem, the term task networks will be
used for the remainder of this paper. A task network with
only one task and no temporal relationships is the trivial
case of a network, and is the simplest scheduling unit.
The tasks of a task network use resources. In the dinner
example, each task would use several resources (power,
microwave oven, water, food stock, waste disposal, etc.).
Tasks might also have condition requirements which
constrain the scheduling to happen berore, during or after a
certain condition, such as in daylight.
The computer representation of a scheduling unit and its
components is called a model. The quantitative and

associative values in a model are expressed either as rules
or as fields in a dynamic hierarchy of forms.
The planning system’s core logic, or scheduling engine,
must understand the models and must temporally arrange
multiple complex task networks to generate a valid
schedule. In the space activity domain scheduling engines
use algorithmic, heuristic, artificial intelligence, and
human-assisted techniques to solve the space scheduling
problem.

Classes of Scheduling Engines
Scheduling engines are generally considered to be “batch,”
“incremental,” or “mixed-initiative’’ based on how they
handle multiple scheduling requests. See Figure 1.

Batch Scheduling Engines
Batch engines accept a batch of independent scheduling
requests and put them on a timeline by assigning the start
and stop times of each task. The tasks to be scheduled are
often associated only by the use of the same resources.
Batch engines search for an optimum or near-optimum
timeline based on analytical, heuristic, algorithmic and/or
artificial intelligence techniques. The search methods used
by batch engines must simultaneously meet the
requirements of many tasks and many independent
temporal networks. This implementation places a
limitation on the modeling schema and is computationally
intense.
Schedule-repair engines are a special case of batch engines;
the batch of requests fed to the engine is the tasks already
on a timeline, but having constraint violations.
The primary attribute of batch schedulers is the ability to
optimize the use of resources and maximize value of the
timeline. In fact, of the three classes of scheduling engines,
only batch engines can produce near-optimum timelines.
For this reason they are the engine of choice for unmanned
space probes and similar missions.

makes choices based only on scheduling the current
request. Like batch engines, these engines may use
analytical, heuristic, algorithmic andor artificial
intelligence techniques. The logic required to handle the
temporal networks of a single scheduling request is less
difficult to develop than the logic required by batch engines
which need to handle all the temporal networks in the
timeline. As a result, the models presented to an
incremental engine can be more complex and can capture
more of the requirements or can capture the requirements
more accurately.
As an incremental scheduling engine schedules a request, it
behaves like a batch engine with respect to the multiple
tasks of the scheduling requests. However these tasks
always have temporal relationships to each other and may
share the same resources. All tasks scheduled by previous
scheduling requests are locked and the residual resource
profiles are treated as initial resource profiles for the
current request.
Incremental engines do not provide global optimization.
However, a “Monte-Carlo’’ technique is available to
overcome this limitation. Multiple schedules can be
produced by submitting the scheduling request in different
orders; a figure of merit can be assigned to each schedule;
and the best schedule chosen as the solution. Heuristics
and analytical logic can be applied to find a submission
order which gives good results.
One novel use for incremental engines arises when multiple
users are building a single timeline; the engine allows each
user to add tasks and be sure that subsequent action by
other users will not change the times of those tasks. Later
this paper presents an in-depth discussion to two possible
uses of incremental scheduling engines that exploit this
feature.

Mixed Initiative Scheduling
Mixed-initiative scheduling refers to building a timeline
using a timeline editor; Le., it is a manual process. Mixed
initiative is used when the user knows requirements that are
not described in the requests, the scheduling engine is
weak, oniy a few new requests are to be added to the
timeline, or the user wants to control the results. If the user

characteristics of a batch scheduler; if the doesn’t
already-scheduled tasks, then mixed initiative has the

characteristics of an incremental scheduler.

Incrementai Scheduiing Engines

timeline without adjusting the times of already-scheduled
tasks and without introducing constraint violations or
resource overbooking. The core logic of an incremental
engine is usually some form of a greedy algorithm; that is it

hcremental engines add each scheduling request to a moves already-scheduled tasks, mixed initiative has

t

Figure 1 - Classes of Scheduling Engines

Mixed-initiative schedulers usually have code to help the
user avoid violating constraints and often allow the user to
override constraint limits. In the batch flavor, if the models
are complete, the editor might invoke iterative-repair logic
to move other tasks and eliminate constraint violation
introduced by a manual edit. In the incremental flavor, the
editor might invoke an incremental scheduler to make
slight adjustments to the user’s input; this feature is called
“snap-to.” Additionally, the editor might use an
incremental engine to suggest times where tasks can be
placed without introducing constraint violations.
Mixed-initiative scheduling does not automatically provide
global optimization. However if the human user is an
expert and the problem is straight-forward, global
optimization might be achieved.
Currently, all human space missions are scheduled using
mixed initiative.

Reducing Costs
Customer participation in ISS operations scheduling is an
example of reducing costs by using an incremental
scheduling engine. This example assumes the use of an
incremental engine accessed via the web by the users of the
timeline - each user would schedule his tasks without fear
that the tasks will be moved.
In this example, use of the scheduling engine is distributed
to the actual timeline customers (those who benefit by the
execution of the timeline, such as scientists, technicians,
systems operators, or others who have a stake in the
mission). Customers access a central installation of the
scheduling system using remote access technology. An
overview of the operations concept is shown in Figure 2.
The example concept has a weekly scheduling phase that
produces the timeline to be executed during the second
week after it is produced. During any week, three actions
are occurring: the week after next is being scheduled, next
week is being prepared and up-linked, and the current week
is being executed. The preparation phase is closely linked
to what equipment is on board, which is linked to crew
charge-sui VI tiit: arrivai of a re-suppiy ship. In ISS
nomenclature an ”expedition” is a period of time that is

punctuated by a crew change-out; nominally, an expedition
is 90 days. The preparation phase for an expedition
precedes the start of the expedition; the scheduling phase
begins two weeks before the expedition starts and
continues for the duration of the expedition.
During the preparation phase, the customers define what
equipment they need andor will supply and how it is to be
used. The cadre creates the equipment mode models based
on the customers’ needs and the cadre’s own knowledge of
how the equipment is installed in the ISS. Models may
later be updated by the cadre as needed. Additionally, a
high-level plan for the expedition is generated based on
customer input, programmatic goals and constraints, and
various agreements with the partners.
Based on the expedition plan produced during the
preparation phase, and other information, the cadre would
generate daily allocations per payload for the week to be
scheduled. The allocations are not usage profiles but are
total usage limits of each resource during the planning
week. Once the system is initialized with all the resource
constraints, the customers use the incremental scheduler to
produce a timeline. As always, producing a good timeline
requires attempting to schedule a model, rejecting
unacceptable results, tweaking the models, and trying
again. The incremental scheduler places the customer in
the middle of this important iteration loop. No one knows
the payload requirements or what is desired in the timeline
better than the customer, and no one can produce a timeline
as good as the one the customer can produce.
After the customer has completed the scheduling process,
the timeline is delivered to the cadre for timeline
verification. Verification consists of checking that safety
and other criteria are not violated. The cadre will also
visually inspect the timeline and the models.
After the timeline is verified, it is passed to the integration
function where it is integrated with timelines from other
ISS partners. Simultaneously, it is “published” so that the
customers can review the timeline. If a customer wants to
have the schedule changed, an execution change request is
written and submitted to the execution team. Since the
customer just produced the schedule (of his pay!oad), it is
unlikely that changes will be required.

Customers Cadre
Equipment Equipment

requirements

System &
Configuration

Knowledge

Cadre
High-level

Customers
High-level
objectives

Preparation Phase

Figure 2 - Customer Participation Operations Concept

* b . ” i

installation of the scheduling system and allow adding to
the timeline during outside excursions.
Earth-based controllers can also remotely access the
extraterrestrial scheduling system to inspectherify the most
current timeline information or to contribute timeline
changes. To preserve precious crew time, it is envisioned
that most extensive re-planning efforts will be performed
by the earth-based controllers, except in those cases where
communications outages or delays preclude a timely
ground response to a real-time event. The earth-based
controllers may also perform timeline edits at the crew’s
request.

Astronaut Participation
Astronaut participation will be important on long-duration
human missions. On short flights like those of the Space
Shuttle and intermediate duration missions like an ISS
expedition, the activities of the crew are primarily
scheduled by the ground controllers. Lack of crew
planning autonomy has been a topic of discussion for
decades, and there is anecdotal consensus among astronauts
that crew autonomy is a good way to mitigate the stress of
long-duration missions. Incremental schedulers have the
potential to allow true astronaut participation in planning
their own daily schedule. One possible implementation is to
co-locate the scheduling engine with the astronauts, and
ground support personnel (controllers, scientists, and
others) would remotely access the extraterrestrial engine.
See Figure 3.
An earth-based engine is used to build baseline models and
timelines. The space-based engine is used to update the
timeline; these updates can be made by the astronauts or by
earth-based personnel using the remote access capabilities
of the incremental scheduler. This concept provides the
astronauts with a complete set of up-to-date planning
information, and allows them to make any additions they
desire to the currently executing timeline.
The level of astronaut participation in the scheduling
process will be dictated by necessity (e.g., responding to
real-time events) as well as by their personal preferences.
In effect, the concept provides an infrastructure which
allows multiple parties (astronauts and ground personnel)
to simultaneously contribute to the development/
maintenance of a single timeline.
Once the planning information is within the scheduling
system at the extraterrestrial site, it will be available for use
by the onboard astronauts. From a local console, they will
be able to viewhspect their timelines, make timeline
changes (by deleting and rescheduling), schedule additional
“job jar” type tasks via an interface to the incremental
scheduling engine, and even edit the modeled tasks (e.g.,
change 2 sp.cifprl_ task rl_;ratinn). P.2 interfzlce y 1 ~ a
personal data assistant could provide access to the habitat

Scheduling System

Earth-based Controllers

Uplink - Resource Modeling
8rseime Task Modeling
Baseline Timeline

Remote Access - Task Modeling

Downlink. Latest Timeline
(Inspectloo & Vertfcation)

Figure 3 - Crew-Participation Operations Concept

Conclusion
NASA is charting a bold new course to explore the cosmos
beginning with humans returning to the Moon and
anticipating a human visit to Mars. Without significant
advances in operations concepts, these missions will be
more expensive than necessary. Additionally, there is a
compelling need for astronaut autonomy to address human
factor issues and contingency issues introduced by light-
time delays.
Of the three classes of scheduling engines (batch,
incremental, and mixed initiative), incremental engines
offer significant promise to reduce cost and provide
substantial astronaut participation. The attributes of
incremental scheduling engines which enable cost
reduction and astronaut participation are:

The logic of the engine can handle more
complete/complex models because it schedules only one
model at a time. More complete models mean that less
information is maintained outside of the model and less
mixed-initiative scheduling is needed.
The scheduling cadre does not need to be experts on the
objective of the temporal networks being scheduled.
They only need to provide knowledge of the hardware
and the vehicle/habitat systems.
Astronauts do not need to be experts on the tasks within
L L l r I I I u u b 1 3 . 1 iiby bail ~ U U I I I I C ally ~ I G - U G I I I I G U iiiudei io
the scheduling engine and, since the model contains all
the requirements, produce a valid schedule.
Users can add to the timeline without danger of
modifying what is already scheduled. For example,
ground controllers are assured that astronaut additions to
the timeline do not impact critical tasks.
A user who is scheduling a given model does not need to
know anything about other models or what is already on
the timeline.
The independent handling of each scheduling request
allows simultaneous remote access to the scheduling
engine by multiple users. Thus, scheduling can be
distributed to those who have the best knowledge and
vested interest in producing a good timeline.

+h,, ,,,4,I, TL-.. --I -..L--:& >-e... -1

